Revisiting the hexagonal lattice: on optimal lattice circle packing

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting the Hexagonal Lattice: on Optimal Lattice Circle Packing

In this note we give a simple proof of the classical fact that the hexagonal lattice gives the highest density circle packing among all lattices in R2. With the benefit of hindsight, we show that the problem can be restricted to the important class of well-rounded lattices, on which the density function takes a particularly simple form. Our proof emphasizes the role of well-rounded lattices for...

متن کامل

On sublattices of the hexagonal lattice

How many sublattices of index N are there in the planar hexagonal lattice? Which of them are the best from the point of view of packing density, signal-to-noise ratio, or energy? We answer the first question completely and give partial answers to the other questions.

متن کامل

Wideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...

متن کامل

On the packing chromatic number of Cartesian products, hexagonal lattice, and trees

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into packings with pairwise different widths. Several lower and upper bounds are obtained for the packing chromatic number of Cartesian products of graphs. It is proved that the packing chromatic number of the infinite hexagonal lattice lies between 6 and 8. Optimal lower a...

متن کامل

From Sphere Packing to the Theory of Optimal Lattice Sampling

In this paper we introduce reconstruction kernels for the 3D optimal sampling lattice and demonstrate a practical realisation of a few. First, we review fundamentals of multidimensional sampling theory. We derive the optimal regular sampling lattice in 3D, namely the Body Centered Cubic (BCC) lattice, based on a spectral sphere packing argument. With the introduction of this sampling lattice, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Elemente der Mathematik

سال: 2011

ISSN: 0013-6018

DOI: 10.4171/em/163